Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(CE) (2011 Onwards) (Sem.-6) FOUNDATION ENGINEERING

Subject Code : BTCE-603 Paper ID : [A2290]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.
- 4. Assume any data suitably.

SECTION-A

Q.1 Write briefly:

- a. Define the term Net ultimate bearing capacity.
- b. Write the Boussinesq's equation for a point load.
- c. Differentiate between immediate and consolidation settlement.
- d. How the spacing of boreholes is fixed?
- e. Explain the limitations of elastic formula.
- f. Differentiate between point resistance and frictional resistance.
- g. List the types of Pile foundations.
- h. What are the causes of settlement of foundations?
- i. Explain the essential features of a stationary piston sampler.
- j. What is Passive Earth Pressure?

SECTION-B

- Q.2. What are the precautions to be cared for during sinking of wells? How are tilts and shifts of wells rectified?
- Q.3. Determine the passive pressure by rankine theory per unit run for retaining wall 4 m high with $i = 15^{\circ}$, $\phi = 36$ and $\gamma = 19 \text{KN/m}^3$, the backface of the wall is smooth and vertical.
- Q.4. Explain the behaviour of a pile group in clay and sand.
- Q.5. How do you proportion the footings for equal settlements?
- Q.6. Explain the Working of Rotary Sampler.

SECTION-C

- Q.7. A footing 4 m \times 4 m is located at a depth of 1.5 m below G.L. in a deep deposit of homogeneous cohesionless soil which has $\gamma = 1.9 \text{ t/m}^3$ and average corrected N value as 23. The water table is 2.0 m below ground surface. Find the net bearing capacity for a permissible settlement of 35 mm.
- Q.8. Explain the essential parts of a Pneumatic caisson.
- Q.9. A 300 mm square pile 12 m long is driven in a deposit of sand with $\Phi = 35$ degree (For $\Phi = 35$ degree, assume $N_q = 40$, $N_y = 32$). The unit weight of sand is 16 kN/m^2 . What is the allowable load, assuming a factor of safety = 3 and lateral earth pressure coefficient = 0.6.